Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles.

نویسندگان

  • Daniel A Cogswell
  • Martin Z Bazant
چکیده

A theoretical investigation of the effects of elastic coherency strain on the thermodynamics, kinetics, and morphology of intercalation in single LiFePO(4) nanoparticles yields new insights into this important battery material. Anisotropic elastic stiffness and misfit strains lead to the unexpected prediction that low-energy phase boundaries occur along {101} planes, while conflicting reports of phase boundary orientations are resolved by a partial loss of coherency in the [001] direction. Elastic relaxation near surfaces leads to the formation of a striped morphology with a characteristic length scale predicted by the model, yielding an estimate of the interfacial energy. The effects of coherency strain on solubility and galvanostatic discharge are studied with a reaction-limited phase-field model that quantitatively captures the influence of misfit strain, particle size, and temperature on solubility seen in experiments. Coherency strain strongly suppresses phase separation during discharge, which enhances rate capability and extends cycle life. The effects of elevated temperature and the feasibility of nucleation are considered in the context of multiparticle cathodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge

Using a novel electrochemical phase-field model, we question the common belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain...

متن کامل

محاسبه کرنش الاستیک هم سیمایی برای مورفولوژی های مختلف رسوبات ’γ در یک سوپر آلیاژ پایه نیکل

Coherency elastic strain between γ and  is one of the effective factors which affect the morphology, spatial re-arrangement and coarsening kinetics of  precipitates in nickel-base superalloys. In this investigation, using X-ray diffraction (XRD) technique, the - constrained and unconstrained lattice misfits were calculated for different morphologies of the  precipitates in Inconel 738L...

متن کامل

Quadruple-junction lattice coherency and phase separation in a binary-phase system

If each phase has an identical crystal structure and small misfit in the lattice parameters in a binary-phase crystalline system, coherent phase boundaries usually form during separation. Although there have been numerous studies on the effect of coherency elastic energy, no attempt has been made to demonstrate how the phase-separation behaviour varies when multiple interfaces meet at a junctio...

متن کامل

Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li<sub><italic>x</italic></sub>FePO<sub>4</sub>

The performance of battery electrode materials is strongly affected by inefficiencies in utilization kinetics and cycle life as well as size effects. Observations of phase transformations in these materials with high chemical and spatial resolution can elucidate the relationship between chemical processes and mechanical degradation. Soft X-ray ptychographic microscopy combined with X-ray absorp...

متن کامل

Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2012